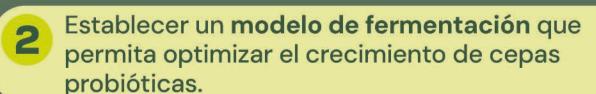


Desarrollo biotecnológico de pre y probióticos dirigidos a alimentación animal (aviar y porcina) a partir de fibra de alperujo y de otros subproductos hortícolas

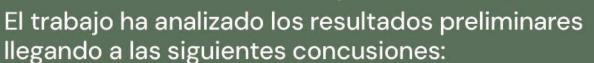
INTRODUCCIÓN


Residuos agrícolas para una alimentación animal sostenible


El proyecto **OLIVEBIOME** es una iniciativa innovadora que busca desarrollar soluciones biotecnológicas sostenibles para la alimentación animal, principalmente en los sectores avícola y porcino, utilizando subproductos agrícolas, como la fibra del alperujo (subproducto resultante de la extracción del aceite de oliva) y otros subproductos hortícolas. Estos subproductos, que suelen ser considerados residuos, serán transformados mediante procesos fermentativos en ingredientes funcionales (prebióticos y probióticos), que mejoran la salud intestinal de los animales y la calidad de la carne producida.

El proyecto no solo tendrá un significativo impacto ambiental y social, sino que conseguirá redirigir toda la cadena de valor hacia una gestión sostenible de los recursos basándose en un modelo de economía circular y consiguiendo una mejora sustancial de la calidad de vida de los ciudadanos mediante el consumo sostenible de productos agrícolas y ganaderos más saludables y seguros. agroalimentarios inteligentes y eficientes que proporcionen alimentos saludables a la población.

OBJETIVOS



Escalado de un biorreactor para la producción semi-industrial de probióticos a partir de fibras y cepas seleccionadas.

Evaluar el impacto de los ingredientes diseñados en la modulación del microbioma intestinal en animales de granja (porcino y aviar) y su efecto en el bienestar del animal.

Promover una gestión sostenible de los subproductos del olivo, mediante la implementación de un modelo de economía circular en la industria olivarera española.

CONCLUSIONES

Alto contenido en fibra de subproductos (>40%).

· La materia prima in. esparrago destaca por fibra soluble.

• La materia prima in. avena muestra un elevado poder fermentativo.

• Perfiles de fibra favorables para crecimiento de bacterias beneficiosas como Lactobacillus.

ACTIVIDADES

Para la consecución de los objetivos se han realizado las siguientes actividades:

Caracterización de la fibra del alperujo y subproductos hortícolas

Se han analizado los componentes de la fibra del olivo y otros vegetales como el espárrago, para identificar sus propiedades prebióticas y su capacidad para fermentar probióticos útiles en la producción animal.

Evaluación de la efectividad en la alimentación animal

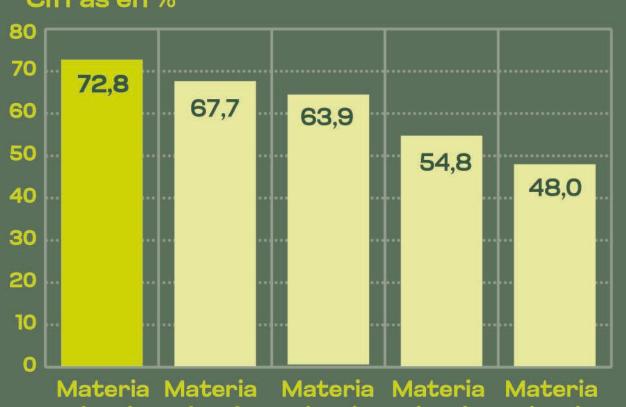
Los ingredientes obtenidos serán estudiados en la alimentación de animales, específicamente en cerdos y pollos, para evaluar su impacto en la modulación del microbioma intestinal y en el bienestar del animal.

Desarrollo de sistemas de fermentación semiindustrial

Se han desarrollado sistemas de fermentación a nivel semiindustrial para obtener probióticos a gran escala. Estos sistemas serán evaluados por su capacidad para producir compuestos beneficiosos para la salud animal.

Estudio del impacto ambiental y social del proyecto

> El proyecto pretende reconducir la cadena de valor hacia un modelo de economía circular. Esto permitirá gestionar los subproductos de forma sostenible, reduciendo la huella ecológica y promoviendo el uso de recursos locales.


RESULTADOS 1

Resultados preliminares tras análisis funcional para la alimentación animal

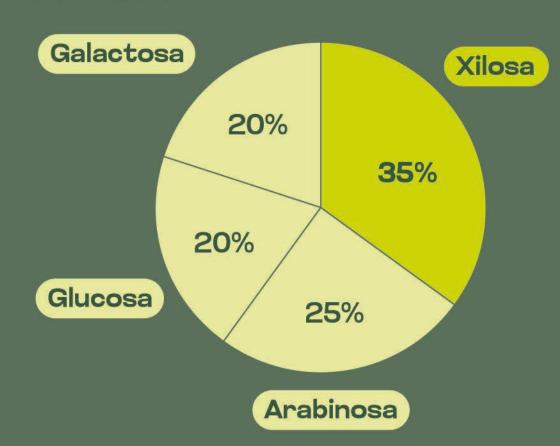

Los residuos de materia prima in. avena y materia prima in. espárrago presentan un mayor contenido de fibra y actividad antioxidante. La composición glicosídica muestra una riqueza en xilosa y arabinosa, buenos sustratos para bacterias beneficiosas. El peso molecular de la fibra soluble varía según la muestra, destacando materia prima in. avena y materia prima in. espárrago como matrices con mayor estabilidad estructural. Estas propiedades convierten a ciertos subproductos en candidatos prometedores como ingredientes prebióticos en la formulación de piensos funcionales.

FIG 1: CONTENIDO TOTAL DE FIBRA Cifras en %

prima in. prima in. prima in. prima in. avena olivar espárrago tomate vino

FIG 3: COMPOSICIÓN GLICOSÍDICA Cifras en %



FIG 2: ACTIVIDAD ANTIOXIDANTE Cifras en mg ácido gálico/g fibra

prima in. prima in. prima in. prima in. prima in. espárrago olivar tomate

FIG 4: PESOS MOLECULARES

MINISTERIO

DE AGRICULTURA, PESCA

Y ALIMENTACIÓN

550.110,66 €